Variations in peritoneal solute transport charges in peritoneal dialysis

Differences in peritoneal solute transport rates in peritoneal dialysis
March 10, 2021 0 Comments

  • 1.

    Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Oreopoulos DG, Web page D. Elevated peritoneal membrane transport is related to decreased affected person and approach survival for steady peritoneal dialysis sufferers. The Canada-USA (CANUSA) Peritoneal Dialysis Research Group. J Am Soc Nephrol. 1998;9:1285–92.

    PubMed 
    CAS 

    Google Scholar 

  • 2.

    Brimble KS, Walker M, Margetts PJ, Kundhal KK, Rabbat CG. Meta-analysis: peritoneal membrane transport, mortality, and approach failure in peritoneal dialysis. J Am Soc Nephrol. 2006;17:2591–8.

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Flessner MF. The transport barrier in intraperitoneal remedy. Am J Physiol Renal Physiol. 2005;288:F433–42.

    Article 
    CAS 

    Google Scholar 

  • 4.

    Rippe B, Haraldsson B. Fluid and protein fluxes throughout small and huge pores within the microvasculature. Utility of two-pore equations. Acta Physiol Scand. 1987;131:411–28.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 5.

    Rippe B, Venturoli D, Simonsen O, de Arteaga J. Fluid and electrolyte transport throughout the peritoneal membrane throughout CAPD in keeping with the three-pore mannequin. Perit Dial Int. 2004;24:10–27.

    PubMed 
    CAS 

    Google Scholar 

  • 6.

    Venturoli D, Rippe B. Transport asymmetry in peritoneal dialysis: software of a serial heteroporous peritoneal membrane mannequin. Am J Physiol Renal Physiol. 2001;280:F599–606.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 7.

    Mamas M, Dunn WB, Neyses L, Goodacre R. The position of metabolites and metabolomics in clinically relevant biomarkers of illness. Arch Toxicol. 2011;85:5–17.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 8.

    Hirayama A, Nakashima E, Sugimoto M, Akiyama S, Sato W, Maruyama S, et al. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal Bioanal Chem. 2012;404:3101–9.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 9.

    Hirayama A, Tomita M, Soga T. Sheathless capillary electrophoresis-mass spectrometry with a high-sensitivity porous sprayer for cationic metabolome evaluation. Analyst. 2012;137:5026–33.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 10.

    Sugimoto M, Kikuchi S, Arita M, Soga T, Nishioka T, Tomita M. Giant-scale prediction of cationic metabolite identification and migration time in capillary electrophoresis mass spectrometry utilizing synthetic neural networks. Anal Chem. 2005;77:78–84.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 11.

    Banker MJ, Clark TH, Williams JA. Improvement and validation of a 96-well equilibrium dialysis equipment for measuring plasma protein binding. J Pharm Sci. 2003;92:967–74.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 12.

    Kariv I, Cao H, Oldenburg KR. Improvement of a excessive throughput equilibrium dialysis methodology. J Pharm Sci. 2001;90:580–7.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 13.

    Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Variations within the peritoneal transport of water, solutes and proteins between dialysis with two- and with three-litre exchanges. Nephrol Dial Transpl. 1988;3:198–204.

    CAS 

    Google Scholar 

  • 14.

    Bridges CR, Myers BD, Brenner BM, Deen WM. Glomerular cost alterations in human minimal change nephropathy. Kidney Int. 1982;22:677–84.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 15.

    Rippe B, Davies S. Permeability of peritoneal and glomerular capillaries: what are the variations in keeping with pore concept? Perit Dial Int. 2011;31:249–58.

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Kuhlmann MK. Phosphate elimination in modalities of hemodialysis and peritoneal dialysis. Blood Purif. 2010;29:137–44.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 17.

    Zehnder C, Gutzwiller JP, Renggli Ok. Hemodiafiltration–a brand new therapy choice for hyperphosphatemia in hemodialysis sufferers. Clin Nephrol. 1999;52:152–9.

    PubMed 
    CAS 

    Google Scholar 

  • 18.

    Duranton F, Lundin U, Gayrard N, Mischak H, Aparicio M, Mourad G, et al. Plasma and urinary amino acid metabolomic profiling in sufferers with completely different ranges of kidney perform. Clin J Am Soc Nephrol. 2014;9:37–45.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 19.

    Chuang CK, Lin SP, Chen HH, Chen YC, Wang TJ, Shieh WH, et al. Plasma free amino acids and their metabolites in Taiwanese sufferers on hemodialysis and steady ambulatory peritoneal dialysis. Clin Chim Acta. 2006; 364:209–16.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 20.

    Ilcol YO, Donmez O, Yavuz M, Dilek Ok, Yurtkuran M, Ulus IH. Free choline and phospholipid-bound choline concentrations in serum and dialysate throughout peritoneal dialysis in kids and adults. Clin Biochem. 2002;35:307–13.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 21.

    Hjelle JT, Welch MH, Pavlina TM, Webb LE, Mockler DF, Miller MA, et al. Choline ranges in human peritoneal dialysate. Adv Perit Dial. 1993; 9:299–302 (Convention on Peritoneal Dialysis).

    PubMed 
    CAS 

    Google Scholar 

  • 22.

    Rennick B, Acara M, Hysert P, Mookerjee B. Choline loss throughout hemodialysis: homeostatic management of plasma choline concentrations. Kidney Int. 1976;10:329–35.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 23.

    Yung S, Chan TM. Glycosaminoglycans and proteoglycans: neglected entities? Perit Dial Int. 2007;27(Suppl 2):104–9.

    Google Scholar 

  • 24.

    Sekine T, Miyazaki H, Endou H. Molecular physiology of renal natural anion transporters. Am J Physiol Renal Physiol. 2006;290:F251–61.

    Article 
    CAS 

    Google Scholar 

  • 25.

    Masereeuw R, Mutsaers HA, Toyohara T, Abe T, Jhawar S, Candy DH, et al. The kidney and uremic toxin removing: glomerulus or tubule? Seminars in nephrology. 2014; 34:191–208.

  • 26.

    Wilkie M. Introduction to point-counterpoint: mechanisms of glomerular filtration: pores versus {an electrical} subject. Perit Dial Int. 2015;35:4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Hung SC, Kuo KL, Wu CC, Tarng DC. Indoxyl sulfate: a novel cardiovascular threat think about power kidney illness. J Am Coronary heart Assoc. 2017. https://doi.org/10.1161/JAHA.116.005022.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Lekawanvijit S, Kompa AR, Wang BH, Kelly DJ, Krum H. Cardiorenal syndrome: the rising position of protein-bound uremic toxins. Circ Res. 2012;111:1470–83.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 29.

    Ito S, Yoshida M. Protein-bound uremic toxins: new culprits of cardiovascular occasions in power kidney illness sufferers. Toxins (Basel). 2014;6:665–78.

    Article 
    CAS 

    Google Scholar 

  • 30.

    Zager RA, Johannes GA, Sharma HM. Natural anion infusions exacerbate experimental acute renal failure. Am J Physiol. 1983;244:F48–55.

    PubMed 
    CAS 

    Google Scholar 

  • 31.

    Satoh M, Hayashi H, Watanabe M, Ueda Ok, Yamato H, Yoshioka T, et al. Uremic toxins overload accelerates renal injury in a rat mannequin of power renal failure. Nephron Exp Nephrol. 2003;95:e111-8.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 32.

    Maiorca R, Brunori G, Zubani R, Cancarini GC, Manili L, Camerini C, et al. Predictive worth of dialysis adequacy and dietary indices for mortality and morbidity in CAPD and HD sufferers. A longitudinal examine. Nephrol Dial Transpl. 1995;10:2295–305.

    Article 
    CAS 

    Google Scholar 

  • 33.

    Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal perform and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA examine. J Am Soc Nephrol. 2001;12:2158–62.

    PubMed 
    CAS 

    Google Scholar 

  • 34.

    Canada-USA (CANUSA) Peritoneal Dialysis Research Group. Adequacy of dialysis and vitamin in steady peritoneal dialysis: affiliation with medical outcomes. J Am Soc Nephrol. 1996;7:198–207.

    Google Scholar 

  • 35.

    del Peso G, Fernandez-Reyes MJ, Hevia C, Bajo MA, Castro MJ, Cirugeda A, et al. Elements influencing peritoneal transport parameters through the first yr on peritoneal dialysis: peritonitis is the principle issue. Nephrol Dial Transpl. 2005;20:1201–6.

    Article 
    CAS 

    Google Scholar 

  • 36.

    Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, et al. Connective tissue development issue (CTGF/CCN2) is elevated in peritoneal dialysis sufferers with excessive peritoneal solute transport price. Am J Physiol Renal Physiol. 2010;298:F721-33.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 37.

    Lambie M, Chess J, Donovan KL, Kim YL, Do JY, Lee HB, et al. Unbiased results of systemic and peritoneal irritation on peritoneal dialysis survival. J Am Soc Nephrol. 2013;24:2071–80.

    Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 

  • 38.

    Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, et al. Morphologic modifications within the peritoneal membrane of sufferers with renal illness. J Am Soc Nephrol. 2002;13:470–9.

    PubMed 

    Google Scholar 

  • 39.

    Gotloib L, Shustak A, Jaichenko J. Lack of mesothelial electronegative fastened fees throughout murine septic peritonitis. Nephron. 1989;51:77–83.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 40.

    Pries AR, Secomb TW, Gaehtgens P. The endothelial floor layer. Pflugers Archiv. 2000;440:653–66.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 41.

    Tawada M, Ito Y, Hamada C, Honda Ok, Mizuno M, Suzuki Y, et al. Vascular endothelial cell damage is a vital issue within the improvement of encapsulating peritoneal sclerosis in long-term peritoneal dialysis sufferers. PLoS One. 2016;11:e0154644.

    Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *